Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Henryk Krawczyk, ${ }^{\text {a }}$ tukasz Albrecht, ${ }^{\text {a }}$ Jakub
Wojciechowski ${ }^{\text {b }}$ and Wojciech M. Wolf ${ }^{\text {b }}$

${ }^{\text {a }}$ Institute of Organic Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland, and ${ }^{\mathbf{b}}$ Institute of General and Ecological Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland

Correspondence e-mail: wmwolf@p.lodz.pl

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.072$
$w R$ factor $=0.207$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]\qquad

($2 R^{*}, 3 R^{*}, 4 R^{*}$)-tert-Butyl 2-(diethoxyphosphoryl)-4-nitro-3-(4-nitrophenyl)pentanoate

The title compound, $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}$, was isolated as a single diastereoisomer. The molecule adopts an extended conformation with the phosphoryl and 4-nitrophenyl groups placed in antiperiplanar positions.

Comment

We have recently demonstrated that primary and secondary 3-aryl-2-(diethoxyphosphoryl)-4-nitroalkanoic acids undergo spontaneous Nef reactions (Ballini \& Petrini, 2004) leading to 3-(diethoxyphosphoryl)-1-hydroxysuccinimides and 2-(dieth-oxyphosphoryl)-4-oxoalkanoic acids (Krawczyk et al., 2002; Krawczyk \& Albrecht, 2005; Krawczyk et al., 2006). The title compound, (I), was prepared as a single diastereoisomer and is a key substrate in this reaction. Its relative stereochemistry at all three stereogenic centers C5, C11 and C12 is $2 R^{*}, 3 R^{*}, 4 R^{*}$, respectively (Fig. 1). The molecule adopts an extended conformation with the phosphoryl and 4-nitrophenyl groups placed in antiperiplanar positions. The latter group is gauche with respect to the methyl substituent. The main bond lengths are close to those observed in related compounds (Cambridge Structural Database, Version 5.27, April 2006 update; ConQuest, Version 1.8; Mogul, Version 1.1; Allen, 2002) In particular, the N1-C12 bond is much longer [1.509 (4) A.] than the $\mathrm{N} 2-\mathrm{C} 17$ bond $[1.460$ (4) \AA]; the standard values (Allen et al., 1992) are 1.509 and $1.468 \AA$, respectively. The shortening of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds in the diethoxphosphoryl groups (Table 1) has been observed in the crystal structures of organophosphorus compounds and may follow from high displacement parameters of the terminal C atoms. The latter are often prone to dynamic disorder (Wojciechowski \& Wolf, 2006). However, an attempt to refine the $\mathrm{C} 1 / \mathrm{C} 2$ ethyl group using a two-site disorder model gave unsatisfactory results.

(I)

The P atom is located at the center of a distorted tetrahedron with valency angles ranging in value from 101.19 (14) to $116.47(14)^{\circ}$. On average the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles [114.7 (2) ${ }^{\circ}$]

Received 12 May 2006
Accepted 31 May 2006

Figure 1
Molecular structure of the title compound (I). Displacement ellipsoids are drawn at the 50% probability level.
are larger than $\mathrm{O}-\mathrm{P}-\mathrm{C}\left[103.7\right.$ (2) $\left.{ }^{\circ}\right]$. This is a general feature, often encountered in phosphorus compounds, indicating the significance of repulsive Coulombic type interactions between the O atoms bearing the negative charge (Gillespie \& Popelier, 2001).

In the crystal structure, atoms $\mathrm{O} 1, \mathrm{O} 4$ and O 6 are involved in close intermolecular contacts with the neighboring H atoms. According to the definition of Desiraju and Steiner (Steiner, 1997; Steiner \& Desiraju, 1998), these contacts could be classified as weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Details are summarized in Table 2.

Experimental

Compound (I) was obtained by the Michael addition of nitroethane to tert-butyl 2-diethoxyphosphoryl-3-(4-nitrophenyl)acrylate in the presence of potassium tert-butoxide. Synthetic details are given by Krawczyk et al. (2006). Crystals suitable for the X-ray structure determination were grown at 293 K by slow evaporation of an ethanol-water (1:1) solution.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{P}$
$M_{r}=460.41$
Monoclinic, $P 2_{1} / c$
$a=12.3654$ (4) \AA
$b=9.7216$ (3) \AA
$c=20.4966$ (7) \AA
$\beta=105.814$ (2) ${ }^{\circ}$
$V=2370.67(13) \AA^{3}$

Data collection

Bruker SMART APEX	25754 measured reflections
\quad diffractometer	4506 independent reflections
ω scans	4262 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.020$
$\quad(S H E L X T L ;$ Bruker, 2003 $)$	$\theta_{\max }=70.7^{\circ}$
$\quad T_{\min }=0.776, T_{\max }=0.867$	

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1223 P)^{2}\right.} \\
&+1.8058 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.97 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.072$
$w R\left(F^{2}\right)=0.208$
$S=0.96$
4506 reflections
304 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{P}-\mathrm{O} 1$	$1.461(3)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.503(5)$
$\mathrm{P}-\mathrm{O} 2$	$1.554(3)$	$\mathrm{N} 1-\mathrm{C} 12$	$1.509(4)$
$\mathrm{P}-\mathrm{O} 3$	$1.538(2)$	$\mathrm{N} 2-\mathrm{C} 17$	$1.460(4)$
$\mathrm{P}-\mathrm{C} 5$	$1.819(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.256(8)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.365(6)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.442(6)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 2$	$115.82(16)$	$\mathrm{O} 2-\mathrm{P}-\mathrm{C} 5$	$101.19(14)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 3$	$116.47(14)$	$\mathrm{O} 3-\mathrm{P}-\mathrm{O} 2$	$101.82(16)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{C} 5$	$111.91(14)$	$\mathrm{O} 3-\mathrm{P}-\mathrm{C} 5$	$108.10(12)$
$\mathrm{O} 1-\mathrm{P}-\mathrm{C} 5-\mathrm{C} 11$	$157.8(2)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 5$	$-173.1(2)$
$\mathrm{P}-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 12$	$63.5(3)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 14$	$61.4(3)$
$\mathrm{P}-\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 14$	$-170.33(17)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 14$	$-62.7(3)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H51 $\cdots \mathrm{O}^{\mathrm{i}}$				
C16-H16 $^{\mathrm{i}} \mathrm{O}^{\mathrm{i}}$	$0.98(3)$	$2.38(4)$	$3.360(3)$	$173(2)$
C19-H19 $^{\mathrm{H}} \mathrm{O}^{\mathrm{ii}}$	0.91	2.58	$3.293(4)$	135

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2,-y+1,-z+1$.

The positional and isotropic displacement parameters of H atoms at stereogenic centers i.e. H51, H111 and H121, were allowed to refine freely. The positional parameters of all remaining H atoms were constrained $\left[\mathrm{C}-\mathrm{H}=0.84-1.09 \AA\right.$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 2003); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was financed by the Institute of General and Ecological Chemistry (JW, WMW) and the Ministry of Education and Science (Project No. 3 T09A 075 28, to HK and ŁA). ŁA received additional support from the European Social Fund and the Polish State ('Mechanism WIDDOK' contract number Z/2.10/II/2.6/04/05/u/2/06).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1992). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 691-705. Dordrecht: Kluwer.

organic papers

Ballini, R. \& Petrini, M. (2004). Tetrahedron, 60, 1017-1047.
Bruker (2003). SAINT-Plus (Version 6.45A), SHELXTL (Version 6.14) and SMART (Version 5.629). Bruker AXS Inc., Madison, Wisconsin, USA.
Gillespie, R. J. \& Popelier, P. L. A. (2001). Chemical Bonding and Molecular Geometry: from Lewis to Electron Densities, p. 126. New York: Oxford University Press.
Krawczyk, H. \& Albrecht, Ł. (2005). Synthesis, pp. 2887-2896.

Krawczyk, H., Albrecht, Ł., Wojciechowski, J. \& Wolf, W. M. (2006). Tetrahedron. In the press.
Krawczyk, H., Wolf, W. M. \& Śliwiński, M. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2794-2798.
Steiner, T. (1997). Chem. Commun. pp. 727-734.
Steiner, T. \& Desiraju, G. R. (1998). Chem. Commun. pp. 891-892.
Wojciechowski, J. \& Wolf, W. M. (2006). Private communication.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

